

Elaine Toscano Fonseca

Comportamento de Vigas de Aço Sujeitas a Cargas Concentradas Através de Técnicas de Inteligência Computacional

Tese de Doutorado

Tese apresentada ao Programa de Pós-Graduação em Engenharia Civil da PUC-Rio como requisito parcial para obtenção do título de Doutor em Ciências de Engenharia Civil.

Ênfase: Estruturas.

Orientador Prof. Sebastião Arthur Lopes de Andrade

Co-orientadores

Prof. Pedro Colmar G. da S. Vellasco Profa. Marley Maria B. R. Vellasco

Rio de Janeiro, Setembro de 2003.

Elaine Toscano Fonseca

Comportamento de vigas de aço sujeitas a cargas concentradas através de técnicas de inteligência computacional

Tese apresentada como requisito parcial para obtenção do título de Doutor pelo Programa de Pós-Graduação em Engenharia Civil do Departamento de Engenharia Civil do Centro Técnico Científico da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Prof. Sebastião Arthur L. de Andrade Presidente/Orientador Departamento de Engenharia Civil – PUC-Rio

Prof. Pedro Colmar G. da Silva Vellasco Co-Orientador UERJ

Profa. Marley Maria B.R. Vellasco Co-Orientador Departamento de Engenharia Elétrica – PUC-Rio

> Prof. Eduardo de Miranda Batista UFRJ

Prof. José Guilherme S. da Silva UERJ

Prof. Raul Rosas e Silva Departamento de Engenharia Civil – PUC-Rio

Prof. Bruno FeijóDepartamento de Informática – PUC-Rio

Prof. Francisco José da Cunha P. Soeiro
UERJ

Prof. Ney Augusto Dumont Coordenador Setorial do Centro Técnico Científico – PUC-Rio

Rio de Janeiro, 24 de setembro de 2003

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, da autora e do orientador.

Elaine Toscano Fonseca

Graduou-se em Engenharia Civil com ênfase em Estruturas pela UERJ (Universidade do Estado do Rio de Janeiro) em dezembro de 1996. Tese de mestrado defendida em março de 1999 no Departamento de Engenharia Civil da PUC-Rio, na área de estruturas, com o Título "Avaliação do Efeito de Cargas Concentradas em Vigas de Aço Através de Algoritmos de Redes Neurais".

Ficha Catalográfica

Fonseca, Elaine Toscano.

Comportamento de vigas de aço sujeitas a cargas concentradas através de técnicas de inteligência computacional / Elaine Toscano Fonseca; orientador: Sebastião Artur Lopes de Andrade; Co-orientadores: Pedro Colmar G. da S. Vellasco; Marley Maria B. R. Vellasco. – Rio de Janeiro: PUC, Departamento de Engenharia Civil, 2003.

240 f.: il.; 30 cm

Tese (doutorado) – Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Engenharia Civil.

Inclui referências bibliográficas.

1. Engenharia civil – Teses. 2. Vigas de aço. 3. Cargas concentradas. 4. Inteligência computacional. 5. Análise paramétrica. 6. Avaliação comportamental. I. Andrade, Sebastião Artur Lopes. II. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Civil. III. Título.

CDD: 624

Aos meus pais, com carinho, por toda a preocupação que sempre tiveram com a minha formação.

Agradecimentos

Ao professor e orientador Sebastião Arthur Lopes de Andrade, pelos relevantes conhecimentos transmitidos e pelo convívio e amizade desenvolvida ao longo deste trabalho.

Aos co-orientadores Pedro Colmar G. da S. Vellasco e Marley M. B. R. Vellasco, pelos conhecimentos transmitidos, respectivamente nas áreas de aço e inteligência computacional, e pela paciência, amizade e apoio durante o curso.

Aos professores que participaram da banca examinadora.

Ao meu marido Luciano Falcão da Silva pelo incentivo durante a realização deste trabalho e pela colaboração imprescindível na fase final de formatação e impressão.

Aos amigos Ana Paula, Antônio Jorge, Cláudia Regina e Claudia Rodrigues, pela confiança depositada, pelo incentivo à conclusão deste trabalho e por compreenderem a minha ausência e isolamento quando na redação final desta tese.

À amiga e secretária Ana Roxo, pelo apoio e atenção ao longo do curso.

Aos amigos do ICA da PUC-Rio, pela ajuda na área de inteligência computacional.

Aos amigos do CEMA, por todo o apoio nos momentos difíceis.

Ao CNPq e a PUC-Rio pelo apoio financeiro.

A Deus, por permitir tudo isso.

Resumo

Fonseca, Elaine Toscano; Andrade, Sebastião A. L.; Vellasco, P.C.G.da S.; Vellasco, M.M.B.R;. Comportamento de vigas de aço sujeitas a cargas concentradas através de técnicas de inteligência computacional. Rio de Janeiro, 2003. 240p. Tese de Doutorado - Departamento de Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro.

As cargas concentradas em vigas de aço são freqüentemente encontradas na prática. Nas situações onde o local de aplicação da carga é fixo, enrijecedores transversais de alma podem ser usados para aumentar a sua resistência, mas devem ser evitados por razões econômicas. Para cargas móveis, é fundamental conhecer a resistência última das almas não enrijecidas.

Diversas teorias foram desenvolvidas para este problema, mas ainda assim, o erro das fórmulas de previsão é superior a 40%. Duas são as causas desta dificuldade de se encontrar uma equação mais precisa: o grande número de parâmetros que influenciam o comportamento de uma viga sujeita a cargas concentradas, e o número insuficiente de dados experimentais presentes na literatura. Por outro lado, o colapso da estrutura pode ocorrer por: plastificação, flambagem global da alma, enrugamento (*crippling*) ou uma combinação destes estados limites. Apesar disto, nenhum estudo foi desenvolvido para avaliar a participação total ou parcial de cada comportamento no colapso.

As redes neurais são modelos computacionais inspirados na estrutura do cérebro, que apresentam características humanas como o aprendizado por experiência e a generalização do conhecimento a partir dos exemplos apresentados. Estas características permitiram, em estudos preliminares, a utilização das redes neurais na previsão da carga última de vigas de aço sujeitas a cargas concentradas.

A Lógica Nebulosa tem como objetivo modelar o modo aproximado de raciocínio, tentando imitar a habilidade humana de tomar decisões racionais em um ambiente de incerteza e imprecisão. Deste modo, a Lógica Nebulosa é uma técnica inteligente que fornece um mecanismo para manipular informações imprecisas, como conceitos de esbeltez, compacidade, flexibilidade e rigidez, além de estabelecer limites mais graduais entre os fenômenos físicos do problema.

Os Algoritmos Genéticos foram inspirados no princípio Darwiniano da evolução das espécies (sobrevivência dos mais aptos e mutações) e na genética. São algoritmos probabilísticos, que fornecem um mecanismo de busca paralela e adaptativa, e têm sido empregados em diversos problemas de otimização.

Este trabalho é a continuação do estudo desenvolvido na dissertação de mestrado (Fonseca, 1999) e tem o objetivo de propor um sistema de avaliação do comportamento estrutural de cargas concentradas, através de uma identificação da influência dos diversos parâmetros na carga e nos tipos de comportamento resultantes (plastificação, enrugamento e flambagem global), estabelecendo limites mais flexíveis entre cada um destes. Esta análise será executada empregando um sistema neuro-fuzzy (híbrido de redes neurais e de lógica nebulosa). Para viabilizar esta análise, torna-se necessária a apresentação de dados de treinamento onde o comportamento estrutural é conhecido. Este trabalho também apresenta um estudo de otimização das fórmulas de projeto existentes empregando algoritmos genéticos.

Os resultados obtidos neste trabalho contribuem para, no futuro, o desenvolvimento de uma fórmula de projeto mais precisa. De posse desta nova fórmula, uma sugestão para sua incorporação em normas de projeto de estruturas de aço poderá ser feita, garantindo, desta forma, um dimensionamento mais seguro e econômico.

Palavras-chave

Estruturas de aço; vigas de aço; cargas concentradas; inteligência computacional; análise paramétrica; redes neurais, lógica nebulosa, algoritmos genéticos.

Abstract

Fonseca, Elaine Toscano; Andrade, Sebastião A.L.de; Vellasco, P.C.G.da S.; Vellasco, M.M.B.R.; **Patch load resistance using computational intelligence techniques**. Rio de Janeiro, 2003. 240p. D.Sc. Thesis – Civil Engineering Department, Pontifical Catholic University of Rio de Janeiro.

Concentrated loads on steel beams are frequently found in engineering practice. In situations where the load application point is fixed, transversal web stiffeners can be used to provide an adequate resistance, but for economic reasons should be avoided whenever possible. For moving loads, the knowledge of the unstiffened web resistance becomes imperative.

Many theories were developed for a better understanding of the problem, however, a 40% error is still present in the current design formulas. A more accurate design formula for this structural problem is very difficult to be obtained, due to the influence of several interdependent parameters and to the insufficient number of experiments found in literature. On the other hand, the structural collapse can be associated to: web yielding, web buckling, web crippling or by their combined influence. Despite this fact, no investigations were found in literature to access their partial of global influence on the beam patch load resistance

Neural networks were inspired in the brain structure in order to present human characteristics such as: learning from experience; and generalization of new data from a current set of standards. Preliminary studies used the neural networks potential to forecast the ultimate load of steel beams subjected to concentrated loads.

The main aim of Fuzzy Logic is to model the complex approximated way of inference, trying to represent the human ability of making sensible decisions when facing uncertainties. Thus, fuzzy logic is an artificial intelligence technique capable of generating a mechanism for treating inaccurate and incomplete information such as: slenderness, flexibility and stiffness, still being capable of establishing gradual boundaries among the physical phenomena involved.

Genetic algorithms are inspired on the Darwin's principle of the species evolution and genetics. They are probabilistic algorithms that generate a

mechanism of parallel and adaptive best fit survival principle and their reproduction and have been long used in several optimisation problems.

This work extends the research developed in a previous MSc. program (Fonseca, 1999) and intends to evaluate and investigate the structural behaviour of steel beams subjected to concentrated loads, identifying the influence of several related parameters. This will be achieved by the use of a neuro-fuzzy system, able to model the intrinsic relationships between the related parameters. The proposed system aim is to relate the physical and geometrical variables that govern the ultimate load with its associated physical behaviour (web yielding, web crippling and web buckling), being capable of establishing gradual boundaries among the physical phenomena involved. This investigation was focused on the development of a neuro fuzzy system. The proposed neuro fuzzy system was trained with data where the collapse mechanism were properly identified validating its results. This investigation also presents a study of patch load design formulae optimization based on genetic algorithm principles.

The obtained results may help the future development of a more accurate design formula, that could be incorporated in steel structures design codes, allowing a safer and economical design.

Keywords

Steel structures; steel beams; patch load; computational intelligence; parametric analysis; neural networks, fuzzy logic, genetic algorithmics.

Sumário

AGRADECIMENTOS	5
RESUMO	6
ABSTRACT	8
SUMÁRIO	10
LISTA DE ILUSTRAÇÕES	12
LISTA DE TABELAS	30
LISTA DE SÍMBOLOS	31
LISTA DE ABREVIATURAS	34
1 INTRODUÇÃO	37
1.1 MOTIVAÇÃO	37
1.2 Objetivo do Trabalho	
1.3 Contribuições	
1.4 ESCOPO DO TRABALHO	
2 REVISÃO BIBLIOGRÁFICA	
2.1 INTRODUÇÃO	
2.2 TRABALHOS SOBRE CARGAS CONCENTRADAS	
2.3 PARÂMETROS RELEVANTES	
3 INTELIGÊNCIA COMPUTACIONAL	
3.1 Introdução	
3.2 ALGORITMOS GENÉTICOS	
3.3 REDES NEURAIS	
3.3.1 A utilização das Redes Neurais para a Previsão da Carga Crítica	
3.4 LÓGICA NEBULOSA	
3.5 MODELOS NEURO-FUZZY HIERÁRQUICOS	
4 TÉCNICAS DE INTELIGÊNCIA COMPUTACIONAL NA AVALIAÇÃO DO PROBLEMA DE CARGAS CONCENTRADAS	
4.1 INTRODUÇÃO	89
4.2 GERAÇÃO DE UMA NOVA FÓRMULA POR ALGORITMOS GENÉTICOS	88
4.4 O SISTEMA DE CLASSIFICAÇÃO DO FENÔMENO FÍSICO PROPOSTO	
4.5 A PESQUISA DOS DADOS BIBLIOGRÁFICOS	
4.6 A ADAPTAÇÃO DO MODELO PROPOSTO AOS DADOS BIBLIOGRÁFICOS	100
4.6.1 Sistema Neuro-fuzzy de classificação	101
4.6.2 Rede de previsão da carga última	103
5 ANÁLISE PARAMÉTRICA DO FENÔMENO FÍSICO ATRAVÉS DO SISTEMA DE CLASSIFICAÇÃO	107
5.1 Introdução	107
5.2 AVALIAÇÃO DOS RESULTADOS E ANÁLISE PARAMÉTRICA.	107
6 ANÁLISE PARAMÉTRICA DA CARGA CRÍTICA ATRAVÉS DA REDE	4 4-
NEURAL DE PREVISÃO	
6 1 Introdução	147

6.2 AVALIAÇÃO DOS RESULTADOS	
6.3 –Análise paramétrica	148
7 CONSIDERAÇÕES FINAIS	183
7.1 Introdução	183
7.2 CONCLUSÕES	184
7.2.1 Algoritmos genéticos	184
7.2.2 Treinamento do Sistema neuro-fuzzy	184
7.2.3 Treinamento da Rede Neural de Previsão da Carga Última	
7.2.4 Análise Paramétrica do Fenômeno Físico	186
7.2.5 Análise Paramétrica da Carga Crítica	188
7.3 SUGESTÕES PARA TRABALHOS FUTUROS	190
REFERÊNCIAS BIBLIOGRÁFICAS	191
ANEXO A DADOS EXPERIMENTAIS	201
ANEXO B FIGURAS EXTRAÍDAS DAS REFERÊNCIAS BIBLIOGRÁFICAS COMO INFORMAÇÕES DO FENÔMENO FÍSICO ATUANTE	205
ANEXO C PERFIS LAMINADOS USADOS NO TREINAMENTO DO SISTEMA	
DE CLASSIFICAÇÃO	221
ANEXO D RESULTADOS PARA OS PERFIS COMERCIAIS	223
ANEXO DIVERSE LADOUT ANA OUT ENTIR CONTENDIAL	<u>22</u> 3

Lista de Ilustrações

Figura 1.1 – Vigas Secundárias descarregando sobre Viga Principal.	
(Seward, 1998)	.38
Figura 1.2 – Compressão da Viga na Mesa da coluna. (Gaylord et al.,	
1992)	.38
Figura 1.3 – Exemplos de Pontes Rolantes. (Newman, 1997)	.38
Figura 1.4 – Configurações de (a) enrugamento (<i>crippling</i>) e (b)	
Flambagem global da alma da Seção Transversal do Perfil	.39
Figura 1.5 – Parâmetros Considerados no Cálculo da Carga de Ruína	.39
Figura 2.1- Influência da Espessura da Alma na Carga de Ruína.	
(Bergfelt, 1971)	.45
Figura 2.2- Mecanismo de Colapso Proposto por Roberts & Rockey.	
(Roberts & Rockey, 1978)	.49
Figura 2.3 – Comparação da Equação 2.8 com Resultados	
Experimentais. (Roberts & Rockey, 1978)	.50
Figura 2.4 – Comparação da Equação 2.11 com Resultados	
Experimentais. (Roberts & Newark, 1997)	.53
Figura 2.5 - Influência do Tipo de Aço na Carga de Ruína. (Raoul et	
al., 1991)	.55
Figura 2.6 – Influência da Largura da Mesa na Carga de Ruína.	
(Raoul et al., 1991)	.56
Figura 2.7 – Influência da Espessura da Mesa na Carga de Ruína.	
(Raoul et al., 1991)	.57
Figura 2.8 – Influência do Comprimento Uniformemente Carregado na	
Carga de Ruína. (Raoul et al., 1991)	.57

rigura 2.9 – inilidencia do Fator de Forma do Pamerna Carga de	
Ruína. (Raoul et al., 1991)	58
Figura 2.10 – Influência da mesa na carga última. (Fonseca, 1999)	59
Figura 2.11 – Influência da espessura da mesa e do fator de forma na	
carga última	60
Figura 2.12 – Influência da Espessura da mesa e do comprimento	
carregado na carga última - (Fonseca, 1999)	60
Figura 3.1 – Ciclo do algoritmo	74
Figura 3.2 – Neurônio Biológico (Schalch., 2003).	76
Figura 3.3 – Estrutura do Elemento Processador j	76
Figura 3.4 – Estrutura do Modelo adotado.	79
Figura 3.5- Modelo de Classificação e Previsão	80
Figura 3.6 – Razão dos Resultados Previstos pela Rede da Faixa 1 e	
Pela equação (2.9) sobre o Resultado Experimental em	
função da Carga Experimental	81
Figura 3.7 – Razão dos Resultados Previstos pela Rede da Faixa 2 e	
Pela equação (2.9) sobre o Resultado Experimental em	
função da Carga Experimental	82
Figura 3.8 – Razão dos Resultados Previstos pela Rede da Faixa 3 e	
Pela equação (2.9) sobre o Resultado Experimental em	
função da Carga Experimental	82
Figura 3.9 – Exemplo de conjuntos nebulosos e funções de	
pertinência	84
Figura 3.10 – Exemplo de estrutura em árvore do modelo NFHB-	
Invertido	86

Figura 4.1 – Avaliação do parâmetro de normalização k95
Figura 4.2 – Avaliação do número de processadores na camada
escondida95
Figura 4.3 – Comparação dos resultados com fórmulas de previsão da
carga95
Figura 4.4 – Modelo neuro-fuzzy96
Figura 4.5 – Painéis característicos das vigas ensaiadas TG1 e TG5
(Skaloud & Novak, 1972)97
Figura 4.6 – Deformação da alma no ponto de aplicação da carga
Bagchi & Rockey, 1975)98
Figura 4.7 – Deformação da alma no ponto de aplicação da
carga(Drdacky & Novotny, 1977))98
Figura 4.8 – Deformações das almas nos pontos de aplicação da
carga - 86 a 111 (Roberts, 1981)99
Figura 4.9 – Modelo neuro-fuzzy alterado100
Figura 4.10 – Resultado do treinamento apresentado pelo programa103
Figura 4.11 – Comparação da Rede com as fórmulas de Roberts e da
Norma Canadense106
Figura 5.1 – Variação dos graus de ativação das três classes em
função da espessura da mesa e da espessura de alma –
análise 1109
Figura 5.2 – Variação dos graus de ativação das três classes em
função da espessura da mesa e da espessura de alma –
análise 2109

Figura 5.3 – Variação dos graus de ativação das três classes em
função da espessura da mesa e da espessura de alma –
análise 3110
Figura 5.4 – Variação dos graus de ativação das três classes em
função da espessura da mesa e da espessura de alma –
análise 4110
Figura 5.5 – Variação dos graus de ativação das três classes em
função da espessura da mesa e da espessura de alma –
análise 5111
Figura 5.6 – Variação dos graus de ativação das três classes em
função da espessura da mesa e da espessura de alma –
análise 6111
Figura 5.7 – Variação dos graus de ativação das três classes em
função da espessura da mesa e da espessura de alma –
análise 7112
Figura 5.8 – Variação dos graus de ativação das três classes em
função da espessura da mesa e da espessura de alma –
análise 8112
Figura 5.9 – Variação dos graus de ativação das três classes em
função da espessura da mesa e da largura de mesa -
análise 1114
Figura 5.10 – Variação dos graus de ativação das três classes em
função da espessura da mesa e da largura de mesa -
análica O

Figura 5.11 – Variação dos graus de ativação das três classes em
função da espessura da mesa e da largura de mesa -
análise 3115
Figura 5.12 – Variação dos graus de ativação das três classes em
função da espessura da mesa e da largura de mesa -
análise 4115
Figura 5.13 – Variação dos graus de ativação das três classes em
função da altura da alma e da largura de mesa – análise 1117
Figura 5.14 – Variação dos graus de ativação das três classes em
função da altura da alma e da largura de mesa – análise 2117
Figura 5.15 – Variação dos graus de ativação das três classes em
função da altura da alma e da largura de mesa – análise 3118
Figura 5.16 – Variação dos graus de ativação das três classes em
função da altura da alma e da largura de mesa – análise 4118
Figura 5.17 – Variação dos graus de ativação das três classes em
função da altura da alma e da largura de mesa – análise 5119
Figura 5.18 – Variação dos graus de ativação das três classes em
função da altura da alma e da largura de mesa – análise 6119
Figura 5.19 – Variação dos graus de ativação das três classes em
função da altura da alma e da largura de mesa – análise 7120
Figura 5.20 – Variação dos graus de ativação das três classes em
função da altura da alma e da largura de mesa – análise 8120
Figura 5.21 – Variação dos graus de ativação das três classes em
função da altura da alma e da largura de mesa – análise 9121

Figura 5.22 – Variação dos graus de ativação das tres classes em
função da altura da alma e da largura de mesa – análise 10121
Figura 5.23 – Variação dos graus de ativação das três classes em
função da altura da alma e da largura de mesa – análise 11122
Figura 5.24 – Variação dos graus de ativação das três classes em
função da altura da alma e da largura de mesa – análise 12122
Figura 5.25 – Variação dos graus de ativação das três classes em
função da altura da alma e da largura de mesa – análise 13123
Figura 5.26 – Variação dos graus de ativação das três classes em
função da altura da alma e da largura de mesa – análise 14123
Figura 5.27 – Variação dos graus de ativação das três classes em
função da altura da alma e da largura de mesa – análise 15124
Figura 5.28 – Variação dos graus de ativação das três classes em
função da altura da alma e da largura de mesa – análise 16124
Figura 5.29 – Variação dos graus de ativação das três classes em
função do fator de forma do painel de alma e da espessura
de mesa – análise 1126
Figura 5.30 – Variação dos graus de ativação das três classes em
função do fator de forma do painel de alma e da espessura
de mesa – análise 2126
Figura 5.31 – Variação dos graus de ativação das três classes em
função do fator de forma do painel de alma e da espessura
de mesa – análise 3127

Figura 5.32 – Variação dos graus de ativação das tres classes em
função do fator de forma do painel de alma e da espessura
de mesa – análise 4127
Figura 5.33 – Variação dos graus de ativação das três classes em
função do fator de forma do painel de alma e da espessura
de mesa – análise 5128
Figura 5.34 – Variação dos graus de ativação das três classes em
função do fator de forma do painel de alma e da espessura
de mesa – análise 6128
Figura 5.35 – Variação dos graus de ativação das três classes em
função do fator de forma do painel de alma e da espessura
de mesa – análise 7129
Figura 5.36 – Variação dos graus de ativação das três classes em
função do fator de forma do painel de alma e da espessura
de mesa – análise 8129
Figura 5.37 - Variação dos graus de ativação das três classes em
função da relação c/h e da espessura de mesa – análise 1131
Figura 5.38 - Variação dos graus de ativação das três classes em
função da relação c/h e da espessura de mesa – análise 2131
Figura 5.39 - Variação dos graus de ativação das três classes em
função da relação c/h e da espessura de mesa – análise 3132
Figura 5.40 - Variação dos graus de ativação das três classes em
função da relação c/h e da espessura de mesa – análise 4132

Figura 5.41	i - Variação dos graus de ativação das tres classes em	
fu	unção da relação a/h e do comprimento carregado – análise	
1.		4
Figura 5.42	2 - Variação dos graus de ativação das três classes em	
fu	unção da relação a/h e do comprimento carregado – análise	
2.		4
Figura 5.43	3 - Variação dos graus de ativação das três classes em	
fu	unção da relação a/h e do comprimento carregado – análise	
3.		5
Figura 5.44	4 - Variação dos graus de ativação das três classes em	
fu	unção da relação a/h e do comprimento carregado – análise	
4.		5
Figura 5.45	5 - Variação dos graus de ativação das três classes em	
fu	unção da relação a/h e do comprimento carregado – análise	
5.		6
Figura 5.46	6 - Variação dos graus de ativação das três classes em	
fu	unção da relação a/h e do comprimento carregado – análise	
6		6
Figura 5.47	7 - Variação dos graus de ativação das três classes em	
fu	unção da relação a/h e do comprimento carregado – análise	
7.		7
Figura 5.48	3 - Variação dos graus de ativação das três classes em	
fu	unção da relação a/h e do comprimento carregado – análise	
ρ	13	:7

Figura 5.49 - Variação dos graus de ativação das três classes em	
função da altura da alma para diferentes espessuras de	
alma – análise 1.	139
Figura 5.50 - Variação dos graus de ativação das três classes em	
função da altura da alma para diferentes espessuras de	
alma – análise 2	139
Figura 5.51 - Variação dos graus de ativação das três classes em	
função da altura da alma para diferentes espessuras de	
alma – análise 3	140
Figura 5.52 - Variação dos graus de ativação das três classes em	
função da altura da alma para diferentes espessuras de	
alma – análise 4	140
Figura 5.53 - Variação dos graus de ativação das três classes em	
função da altura da alma para diferentes espessuras de	
alma – análise 5	141
Figura 5.54 - Variação dos graus de ativação das três classes em	
função da altura da alma para diferentes espessuras de	
alma – análise 6	141
Figura 5.55 - Variação dos graus de ativação das três classes em	
função da altura da alma para diferentes espessuras de	
alma – análise 7.	142
Figura 5.56 - Variação dos graus de ativação das três classes em	
função da altura da alma para diferentes espessuras de	
alma - análise 8	142

Figura 5.57 - Variação dos graus de ativação das tres classes em
função da altura da alma para diferentes espessuras de
mesa – análise 1143
Figura 5.58 - Variação dos graus de ativação das três classes em
função da altura da alma para diferentes espessuras de
mesa – análise 2143
Figura 5.59 - Variação dos graus de ativação das três classes em
função da altura da alma para diferentes espessuras de
mesa – análise 3144
Figura 5.60 - Variação dos graus de ativação das três classes em
função da altura da alma para diferentes espessuras de
mesa – análise 4144
Figura 5.61 - Variação dos graus de ativação das três classes em
função da relação c/h e da espessura de alma – análise 1145
Figura 5.62 - Variação dos graus de ativação das três classes em
função da relação c/h e da espessura de alma – análise 2145
Figura 5.63 - Variação dos graus de ativação das três classes em
função da relação c/h e da espessura de alma – análise 3146
Figura 5.64 - Variação dos graus de ativação das três classes em
função da relação c/h e da espessura de alma – análise 4146
Figura 6.1 – Comparação entre os resultados fornecidos pela rede de
previsão para os perfis apresentados no Anexo D e os
resultados das equações de Lyse & Godfrey (2.1), Roberts
(2.12) e CSA (2.15 e 2.16)

rigura 6.2 – Comparação entre os resultados experimentais
disponíveis e os resultados das equações de Lyse &
Godfrey (2.1), Roberts (2.12) e CSA (2.15 e 2.16)149
Figura 6.3 – Variação da Carga em função da Espessura da Mesa
para diferentes espessuras de alma – análise 1150
Figura 6.4 – Variação da Carga em função da Espessura da Mesa
para diferentes espessuras de alma – análise 2150
Figura 6.5 – Variação da Carga em função da Espessura da Mesa
para diferentes espessuras de alma – análise 3151
Figura 6.6 – Variação da Carga em função da Espessura da Mesa
para diferentes espessuras de alma – análise 4151
Figura 6.7 – Variação da Carga em função da Espessura da Mesa
para diferentes espessuras de alma – análise 5152
Figura 6.8 – Variação da Carga em função da Espessura da Mesa
para diferentes espessuras de alma – análise 6152
Figura 6.9 – Variação da Carga em função da Espessura da Mesa
para diferentes espessuras de alma – análise 7153
Figura 6.10 – Variação da Carga em função da Espessura da Mesa
para diferentes espessuras de alma – análise 8153
Figura 6.11 – Variação da Carga em função da Espessura da Mesa
para diferentes larguras de mesa – análise 1154
Figura 6.12 – Variação da Carga em função da Espessura da Mesa
para diferentes larguras de mesa – análise 2154
Figura 6.13 – Variação da Carga em função da Espessura da Mesa
para diferentes larguras de mesa – análise 3155

Figura 6.14 – Variação da Carga em função da Espessura da Mesa
para diferentes larguras de mesa – análise 4155
Figura 6.15 – Variação da Carga em função da Altura da alma para
diferentes larguras de mesa – análise 1156
Figura 6.16 – Variação da Carga em função da Altura da alma para
diferentes larguras de mesa – análise 2156
Figura 6.17 – Variação da Carga em função da Altura da alma para
diferentes larguras de mesa – análise 3157
Figura 6.18 – Variação da Carga em função da Altura da alma para
diferentes larguras de mesa – análise 4157
Figura 6.19 – Variação da Carga em função da Altura da alma para
diferentes larguras de mesa – análise 5158
Figura 6.20 – Variação da Carga em função da Altura da alma para
diferentes larguras de mesa – análise 6158
Figura 6.21 – Variação da Carga em função da Altura da alma para
diferentes larguras de mesa – análise 7159
Figura 6.22 – Variação da Carga em função da Altura da alma para
diferentes larguras de mesa – análise 8159
Figura 6.23 – Variação da Carga em função da Altura da alma para
diferentes larguras de mesa – análise 9160
Figura 6.24 – Variação da Carga em função da Altura da alma para
diferentes larguras de mesa – análise 10160
Figura 6.25 – Variação da Carga em função da Altura da alma para
diferentes larguras de mesa – análise 11161

Figura 6.26 – Variação da Carga em função da Altura da alma para
diferentes larguras de mesa – análise 12161
Figura 6.27 – Variação da Carga em função da Altura da alma para
diferentes larguras de mesa – análise 13162
Figura 6.28 – Variação da Carga em função da Altura da alma para
diferentes larguras de mesa – análise 14162
Figura 6.29 – Variação da Carga em função da Altura da alma para
diferentes larguras de mesa – análise 15163
Figura 6.30 – Variação da Carga em função da Altura da alma para
diferentes larguras de mesa – análise 16163
Figura 6.31 – Variação da Carga em função do fator de forma do
painel de alma para diferentes espessuras de mesa –
análise 1164
Figura 6.32 – Variação da Carga em função do fator de forma do
painel de alma para diferentes espessuras de mesa –
análise 2164
Figura 6.33 – Variação da Carga em função do fator de forma do
painel de alma para diferentes espessuras de mesa –
análise 3165
Figura 6.34 – Variação da Carga em função do fator de forma do
painel de alma para diferentes espessuras de mesa –
análise 4165
Figura 6.35 – Variação da Carga em função do fator de forma do
painel de alma para diferentes espessuras de mesa –
análise 5166

rigura 6.56 – Variação da Carga em função do fator de forma do	
painel de alma para diferentes espessuras de mesa -	
análise 616	6
Figura 6.37 – Variação da Carga em função do fator de forma do	
painel de alma para diferentes espessuras de mesa –	
análise 716	7
Figura 6.38 – Variação da Carga em função do fator de forma do	
painel de alma para diferentes espessuras de mesa –	
análise 816	7
Figura 6.39 - Variação da Carga em função da relação c/h para	
diferentes espessuras de mesa – análise 116	8
Figura 6.40 - Variação da Carga em função da relação c/h para	
diferentes espessuras de mesa – análise 216	8
Figura 6.41 - Variação da Carga em função da relação c/h para	
diferentes espessuras de mesa – análise 316	9
Figura 6.42 - Variação da Carga em função da relação c/h para	
diferentes espessuras de mesa – análise 416	9
Figura 6.43 - Variação da Carga em função da relação a/h para	
diferentes comprimentos carregados – análise 117	0
Figura 6.44 - Variação da Carga em função da relação a/h para	
diferentes comprimentos carregados – análise 217	0
Figura 6.45 - Variação da Carga em função da relação a/h para	
diferentes comprimentos carregados – análise 317	1
Figura 6.46 - Variação da Carga em função da relação a/h para	
diferentes comprimentos carregados – análise 417	1

rigura 6.47 - Variação da Carga em função da relação a/n para
diferentes comprimentos carregados – análise 5 172
Figura 6.48 - Variação da Carga em função da relação a/h para
diferentes comprimentos carregados – análise 6 172
Figura 6.49 - Variação da Carga em função da relação a/h para
diferentes comprimentos carregados – análise 7173
Figura 6.50 - Variação da Carga em função da relação a/h para
diferentes comprimentos carregados – análise 8 173
Figura 6.51 - Variação da Carga em função da altura da alma para
diferentes espessuras de alma – análise 1
Figura 6.52 - Variação da Carga em função da altura da alma para
diferentes espessuras de alma – análise 2174
Figura 6.53 - Variação da Carga em função da altura da alma para
diferentes espessuras de alma – análise 3175
Figura 6.54 - Variação da Carga em função da altura da alma para
diferentes espessuras de alma – análise 4175
Figura 6.55 - Variação da Carga em função da altura da alma para
diferentes espessuras de alma – análise 5176
Figura 6.56 - Variação da Carga em função da altura da alma para
diferentes espessuras de alma – análise 6176
Figura 6.57 - Variação da Carga em função da altura da alma para
diferentes espessuras de alma – análise 7177
Figura 6.58 - Variação da Carga em função da altura da alma para
diferentes espessuras de alma – análise 8177

Figura 6.59 - Variação da Carga em função da altura da alma para
diferentes espessuras de mesa – análise 1
Figura 6.60 - Variação da Carga em função da altura da alma para
diferentes espessuras de mesa – análise 2178
Figura 6.61 - Variação da Carga em função da altura da alma para
diferentes espessuras de mesa – análise 3179
Figura 6.62 - Variação da Carga em função da altura da alma para
diferentes espessuras de mesa – análise 4179
Figura 6.63 - Variação da Carga em função da relação c/h e da
espessura de alma – análise 1180
Figura 6.64 - Variação da Carga em função da relação c/h e da
espessura de alma – análise 2180
Figura 6.65 - Variação da Carga em função da relação c/h e da
espessura de alma – análise 3181
Figura 6.66 - Variação da Carga em função da relação c/h e da
espessura de alma – análise 4181
Figura B.1 – Deformações das almas nos pontos de aplicação da
carga 64-67 (Bergfelt, 1979)205
Figura B.2 – Deformações das almas nos pontos de aplicação da
carga – 68 (Bergfelt, 1979)205
Figura B.3 – Deformações das almas nos pontos de aplicação da
carga – 69 (Bergfelt, 1979)206
Figura B.4 – Deformações das almas nos pontos de aplicação da
carga – 70 (Bergfelt, 1979)206

Figura B.5 – Deformações das almas nos pontos de aplicação da
carga – 71 (Bergfelt, 1979)207
Figura B.6 – Deformações das almas nos pontos de aplicação da
carga - 72 - 73 (Bergfelt, 1979)207
Figura B.7 – Deformações das almas nos pontos de aplicação da
carga -74 (Bergfelt, 1979)208
Figura B.8 – Deformações das almas nos pontos de aplicação da
carga 75 - 76209
Figura B.9 – Deformações das almas e mesas nos pontos de
aplicação da carga - 77 a 85 (Bergfelt, 1979)210
Figura B.10 – Deformações das almas nos pontos de aplicação da
carga – 125 (Bergfelt, 1983)211
Figura B.11 – Deformações das almas nos pontos de aplicação da
carga – 126 (Bergfelt, 1983)211
Figura B.12 – Deformações das almas nos pontos de aplicação da
carga – 127 (Bergfelt, 1983)211
Figura B.13 – Deformações das almas nos pontos de aplicação da
carga – 128 (Bergfelt, 1983)212
Figura B.14 – Deformações das almas nos pontos de aplicação da
carga – 129 (Bergfelt, 1983)212
Figura B.15 – Deformações das almas nos pontos de aplicação da
carga – 130 (Bergfelt, 1983)213
Figura B.16 – Deformações das almas nos pontos de aplicação da
carga – 131 (Bergfelt, 1983)213

Figura B.17 – Deformações das almas nos pontos de aplicação da	
carga – 132 (Bergfelt, 1983)	.214
Figura B.18 – Deformações das almas nos pontos de aplicação da	
carga – 133 (Bergfelt, 1983)	.214
Figura B.19 – Deformações das almas nos pontos de aplicação da	
carga – 134 (Bergfelt, 1983)	.215
Figura B.20 – Deformações das almas nos pontos de aplicação da	
carga – 135 (Bergfelt, 1983)	.215
Figura B.21 – Deformações das almas nos pontos de aplicação da	
carga – 136 (Bergfelt, 1983)	.216
Figura B.22 – Deformações das almas nos pontos de aplicação da	
carga – 137 (Bergfelt, 1983)	.216
Figura B.23 – Deformações das almas nos pontos de aplicação da	
carga – 138 (Bergfelt, 1983)	.217
Figura B.24 – Deformações das almas nos pontos de aplicação da	
carga – 139 (Bergfelt, 1983)	.217
Figura B.25 – Deformações das almas nos pontos de aplicação da	
carga – 140 (Bergfelt, 1983)	.218
Figura B.26 – Deformações das almas nos pontos de aplicação da	
carga – 141 (Bergfelt, 1983)	.218
Figura B.27 – Deformações das almas nos pontos de aplicação da	
carga – 142 (Bergfelt, 1983)	.219

Lista de Tabelas

Tabela 2.1– Resumo dos trabalhos desenvolvidos sobre o assunto61
Tabela 3.1 – Parâmetros Combinados Utilizados no Treinamento79
Tabela 3.2 – Quantidade de Dados de Treinamento e Teste80
Tabela 3.3 – Características das Redes Selecionadas83
Tabela 4.1 – Comparação entre resultados das fórmulas92
Tabela 4.2 - Comparação entre resultados das fórmulas92
Tabela 4.3 – Resultados da rede neural de previsão da carga crítica94
Tabela 4.4 – Características da Primeira Rede Selecionada
Tabela 4.5 – Características da Melhor Rede Selecionada
Tabela 5.1 – Faixa de Parâmetros do Treinamento da Rede108
Tabela 5.2 – Dimensões dos perfis usados para o estudo t _f x t _w 108
Tabela 5.3 – Dimensões dos perfis usados para o estudo t _f x b _f 113
Tabela 5.4 – Dimensões dos perfis usados para o estudo h x b _f 116
Tabela 5.5 – Dimensões dos perfis usados para o estudo a/h x t _f 125
Tabela 5.6 – Dimensões dos perfis usados para o estudo c/h x t _f 130
Tabela 5.7 – Dimensões dos perfis usados para o estudo a/h x c/h 133
Tabela 5.8 – Dimensões dos perfis usados para o estudo h x t _w 138
Tabela 5.9 – Dimensões dos perfis usados para o estudo h x t _f 138
Tabela 5.10 – Dimensões dos perfis usados para o estudo c/h x t _w 138

Lista de Símbolos

- a Distância entre dois enrijecedores verticais; largura do painel de alma.
- b_f Largura da mesa.
- c Comprimento uniformemente carregado.
- c_e Comprimento carregado efetivo, equação 2.12, página 52.
- e Distância entre o enrijecedor transversal e o ponto de aplicação da carga.
- f* Fator de correção para a carga definida na equação 2.7, página 47.
- f_c Fator de correção para a carga baseado no comprimento carregado c.
- f_h Fator de correção para a carga baseado na altura da alma h.
- f_{hs} Fator de correção para a carga baseado na presença de enrijecedores horizontais.
- f_{vs} Fator de correção para a carga baseado na presença de enrijecedores verticais.
- f_{δ} Fator de correção para a carga baseado na presença de imperfeições iniciais.
- f_{σ_b} Fator de correção para a carga baseado na coexistência de tensão de flexão.
- $f_{\sigma_{y,w}}$ Fator de correção para a carga baseado na tensão limite de escoamento da alma.
- h Altura da alma.
- s Distância entre o enrijecedor longitudinal e a mesa carregada.
- t_f Espessura da mesa.
- t_i Espessura equivalente (Função de b_f e t_f), definida na equação 2.4, página 46.
- t_w Espessura da alma.
- z Fator definido na equação 2.33, página 67.
- A_{st} Área do enrijecedor.
- B Esbeltez normalizada -equação (2.13) página 53.
- D Rigidez da placa.
- E Módulo de Elasticidade.

F Fator de segurança. F() Função de Ativação do Elemento processador. Momento de inércia da mesa. I_{fl} $I_{\rm w}$ Momento de inércia da alma. K Fator que varia com a razão t_f/t_w. Κ' Fator de correção para a carga crítica, em função do fator de forma a/h e da razão c/h. Vão livre da viga. L L_p Comprimento de apoio efetivo da viga sobre a coluna. Momento aplicado. M Momento resistido pela mesa. M_{fl} Momento resistido pela alma. $M_{\rm w}$ Momento último. $M_{\rm n}$ Número de Elementos Processadores da Camada da Rede Neural N P Carga aplicada. P_{crit} Carga crítica. Carga definida na equação 2.37, página 68. P_{cv} P_{b} Carga de flambagem. P_{e} Carga elástica. P_{ef} Carga de Elementos Finitos. Carga experimental. P_{exp} Carga Última. $P_{\rm f}$ P_{fl} Carga resistida pela mesa. Carga plástica. P_{pl} Carga Prevista pela Rede Neural. P_{rede} $\boldsymbol{P_{w}}$ Carga resistida pela alma. Rigidez da Mesa S_{f} S_{i} Vetor de Saída fornecido pela rede neural. $S_{\rm w}$ Rigidez da alma. T_{i} Vetor de saída esperado no treinamento da rede neural.

 $\begin{aligned} W_{ij} & & \text{Matriz de pesos entre as camadas da rede Neural} \\ X_i & & \text{Vetor de entrada da rede neural.} \end{aligned}$

α Ângulo definido na Figura 2.2, página 49.

β	Ângulo definido Figura 2.2, página 49.
δ_{i}	Imperfeição inicial.
ф	Ângulo de inclinação da alma em relação ao eixo vertical.
γ	Fator definido na equação 2.33, página 67.
η	Fator que varia com a razão t _i /h.
λ	Fator definido na equação 2.37, página 68.
ν	Coeficiente de Poisson = 0.3.
$\sigma_{\rm b}$	Tensão de flexão.
$\sigma_{ m crit}$	Tensão Crítica.
$\sigma_{ m y}$	Tensão limite de escoamento.
$\sigma^{f,l}$	Tensão limite de escoamento da mesa.
$oldsymbol{\sigma}_{ ext{y}}^{ extit{st}}$	Tensão limite de escoamento do enrijecedor.
σ^{w} ,y	Tensão limite de escoamento da alma.
θ	Fator definido na Figura 2.2, página 49.
θ_{b}	Inclinação da viga em relação à coluna.
$\theta_{\rm j}$	Constante do elemento processador (bias).
Ω	Fator definido na equação 2.8, página 49.

Lista de Abreviaturas

CSA Canadian Standards Association – Norma Canadense

GA Genetic Algorithms – Algoritmos genéticos

ICA Inteligência Computacional Aplicada

"The known is finite, the unknown infinite; intellectually we stand on an islet in the midst of an illimitable ocean of inexplicability. Our business in every generation is to reclaim a little more land, to add something to the extend and solidity of our possessions".

Thomas Henry Huxley, na audiência da "Origem das Espécies" de Charles Darwin, 1887.